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It is shown that for low values of the ambient pressure the flow field for a steady 
spherically symmetric expansion can be divided into three parts termed the 
inviscid region, the intermediate layer and the shock layer. Analytic solutions 
are available in the first two regions and a complete integration of the equation 
is required in the third. Numerical solutions indicate that such a structure is 
achieved in the limit and the universality of the solutions in the individual 
regions is confirmed. 

1. Introduction 
The one-dimensional expansion of a gas in a vacuum or near vacuum is 

a well-known problem of gasdynamics familiar, in the textbook, as the flow in 
a Lava1 nozzle. The classical picture, when the viscosity is negligible, is of two 
possible inviscid flows, supersonic and subsonic, which may be characterized 
by their behaviour a t  infinity. The supersonic solution has finite velocity and 
zero temperature, density and pressure a t  infinity and the subsonic solution has 
zero velocity and finite temperature, density and pressure there. Any flow ex- 
panding from sonic conditions at some fixed radius must exhibit one of these 
variations a t  infinity provided that the neglected dissipative terms do not 
introduce a non-uniformity into the solution. The limiting solution of the Navier- 
Stokes equations for viscosity tending to zero introduces a further type of 
solution, however, which allows a discontinuous change through a normal shock 
wave from one of the above solutions to the other. The thermodynamics of the 
flow demands in an expanding flow that this jump shall be from the supersonic 
branch to the subsonic branch with an appropriate increase in entropy. These 
flows can thus describe flow into a complete vacuum using the supersonic branch 
in its entirety and flow into a region of finite pressure by either a continuous 
subsonic expansion or a supersonic expansion followed by a shock wave and 
subsonic expansion. The limiting structure of the flow has been studied ex- 
tensively (Sakurai 1958) and a review of the limiting solutions has been given by 
the present author (Freeman 1970, subsequently referred to as I). 

This description, relying as it does on the Navier-Stokes equations, requires 
that the gas be a continuous medium. The kinetic-theory description of the 
motion will not however be significantly different although the details of the 
shock structure and the transition from one solution to another will be changed. 
Recently, some progress has been made in the theory of expanding flows using 
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the Boltzmann equation as the governing equation of the flow (see I) and it is 
therefore of some interest to attempt to extend the Navier-Stokes theory in the 
same way. To do this, the high Mach number limit of spherically symmetric 
expanding flow will be investigated. This limit is achieved physically when the 
ambient pressure is small but non-zero - a situation referred to as expansion into 
a near vacuum. 

The thickness of the shock wave is governed by a reference Reynolds number 
based on the conditions at the sonic point or, more conveniently, the inverse of 
this quantity, which will be called a. Another non-dimensional ratio is the dis- 
tance of the shock wave from the source, rs, referred to the reference length r + , t  
the distance of the sonic point from source. Classical theory assumes that rs/r* 
is of order one and a is small. It might be expected that non-uniformities in the 
theory might arise where r*/rs and 01 become comparable. This occurs when the 
shock wave approaches infinity, in regions where r,  the distance from the source, 
is of order .,/a. The condition that the shock wave is in this region may be derived 
from the ideal-gas relation 

wherep is the pressure, p the density, T the temperature and R the gas constant, 
and the continuity relation 

purz = p*a,r:, 

where u denotes the radial velocity and a the sound speed. We obtain 

p = pRT, 

Thus, if the non-dimensional velocity u/a* and temperature TITa remain of 
order unity, it  is required that the non-dimensional pressure p/p* be of order 012 
in this region. The limit is therefore achieved when the ambient pressure is 
inversely proportional to the Reynolds number squared. The region is then 
characterized by a flow in which the change in area, due to spherical symmetry, 
is of equal importance to the viscous dissipation. This might be termed a shock 
wave with area change or a shock layer. The full Navier-Stokes equations with 
spherical symmetry are required to describe the motion and, mathematically, 
a third-order ordinary differential equation or, more conveniently, a system of 
three first-order equations must be solved. It is the main purpose of this paper 
to describe the solution of these equations and the relationship of that solution 
to the whole Aow field. 

The manner in which this region is approached depends critically on the rela- 
tionship assumed for the viscosity as a function of temperature. In this paper, 
it  will be assumed that the viscosity is proportional to a power of the temperature 
and the exponent w is less than one. In this case, it will be shown that prior to 
the region where r,/r = O(a) described above a breakdown occursin perturbations 
of the inviscid theory when r,/r = O(ap), wherep = [2y - 1 - 2(y - 1) w]-1.1 As 7, 
the ratio of specific heats, is greater than one, p < I, equality being achieved 
when w = 1. For that particular case there is no distinction between the shock 

Suffix * refers to conditions at the sonic point. 
$ This exponent should not be confused with viscosity, which is usually denoted by p. 
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layer and intermediate layer (r*/r = O(aa)). For other values of w ,  however, the 
shock layer is downstream of the intermediate layer. 

Having stated the expected structure of the flow field, the mathematical 
limiting procedures used in the equations will now be developed. 

2. The differential equations 
The one-dimensional equations of motion of the flow of a perfect gas with 

spherical symmetry when non-dimensionalized with respect to conditions a t  the 
sonic point become 

where x = rJr,  8 = TIT, and w = ./a*. Here r denotes radial distance, T 
temperature, u radial velocity, c sound speed and the suffix * indicates values at 
the sonic point. The viscosity has been assumed proportional to To and the 
Prandtl number cr is constant. The non-dimensional viscosity or inverse Reynolds 
number a is +u*/u*r*, where Y denotes the kinematic viscosity. Equation (2.1) 
is the momentum equation and (2.2) is the energy equation with the density 
variation eliminated by using the continuity equation in the form 

pur2 = p* u* r:. (2.3) 

Our concern is with the limiting procedure a -+ 0. Applying this limit formally 
to (2.1) and (2.2) gives the inviscid-flow equations 

w , 1 e  = - ((-)’+?!?] 
y w xw’ (2.4) 

where a prime denotes differentiation with respect to x. 
These may be integrated to give 

x2/welicy-1) = i ,  

e+g(y- i)w2 = +(Y+ i), 

which may be recognized as entropy and energy equations. These equations give 
solutions corresponding to subsonic and supersonic flow which may be described 
by their behaviour as x + 0 as 

8 -+ 0, w --f (y + l)/(y - 1) : supersonic, ( 2 . 8 )  

8 +#y+  l), w --f 0: subsonic. (2.9) 

The nature of the transition from supersonic to subsonic flow through a shock 
wave including the limiting procedure has been described elsewhere (I) and will 
not be repeated here. Our main concern will be the problem associated with the 
double limit n: -+ 0 and a + 0. 
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The limiting behaviour of the solutions (2.6) and (2.7) on the supersonic 
branch may be obtained by a formal expansion procedure for small x as 

(2.10) 

1 y - 1 &Y-U 

I 
(y2- I)* (3) * w2 - Y +1 0, = ( z z 2 ) * ( Y - 1 )  , w l = -  

w = w0+w1x2(r-1)+ ..., 
e = elx2(Y--1) + . . . , 

where 

y-  1' 0 -  

Such a solution is not, however, a uniformly valid solution of (2.1) and (2.2). 
The relative magnitude of the next term in the expansion in CI for x small is 
acx-p, where p = [2y - 1 - 2(y - 1) w]-1. This indicates that a new scaling must 
be sought in the region where x = O(ap). 

Introducing new variables 

e X W = -  w-wo @ = -  x = -  
CIA ' aA' a p '  

where h = 2(y- l ) p ,  the equations become in the limit a -f 0 

owo ~ @'@+1 +---o aw 2w 00 =- ["+"@I, x ax x2 yw, ax x 

@ + w , ( y - l ) [ W + ~ ]  = o .  

(2.11) 

(2.12) 

These equations can be readily solved to give 

(2.14) 

where the matching condition from (2.10) has been used to evaluate the arbitrary 
constant. 

It will be assumed that o < I and hence p < 1. The behaviour for w > 1 gives 
a singularity in the region of validity of (2.13) and the whole structure becomes 
different. The particular case w = I gives 

0 = 8,X2(Y-1)exp [y(y + l ) / X ] ,  (2.15) 

but as has already been noted, this result is only of academic interest since then 
the region of validity of (2.15) is swallowed up by the shock-layer behaviour. 

The matching of (2.13) and (2.14) with the inviscid solution upstream has 
already been achieved. Downstream the behaviour of (2.13) corresponds to an 
algebraic increase 0 N X-l'(l-O) as X --f 0. Rewritten in terms of the original 
variables this gives 6+ (x/cI)-~'(~-") and thus 8 remains of order one in a region 
of thickness a. Similarly, an examination of (2.14) shows that W remains of 
order one in this region. The shock-layer behaviour is thus described in terms of 
a boundary-layer region of thickness a which is 'inside' the intermediate layer 
of thickness a/, where ,u < 1. Within this layer, 0 and w remain of order one. 
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3. The shock-layer solution 
To rescale the variables to conform to the suggested magnitudes in the far 

field, we put Y = x/a and retain 6 and w as order one variables. Substitution in 
(2.1) and (2.2) then gives 

These are the full Navier-Stokes equations in a scaled form, indicating that no 
significant simplification can be achieved in this region. The equations describe 
a shock wave structure including an area change. Asymptotically the solutions of 
(3.1) and (3.2) must match for Y -+ 00 with the asymptotic limit of (2.13) and 
(2.14) as X -+ 0. Downstream we expect that the characteristic behaviour asso- 
ciated with the subsonic branch of the inviscid solution will be obtained asymp- 
totically as Y -+ 0. This implies that 8 + g(r+ 1) and w N W, Y2.  Introducing 
a non-dimensional pressure P, then 

P = x2e/w = a2Y=e/w (3.3) 

and as Y -+ 0 P+P-- 0 - ;yl)* - (3.4) 

Thus W, represents the inverse pressure variation at infinity and the pressure 
itself as already observed is proportional to an inverse Reynolds number squared 
in this region. 

It is obviously not possible to obtain analytical solutions of (3.1) and (3.2) 
and any further progress must be made numerically. It has already been shown 
in I that the scaling described above enables numerical results obtained by direct 
integration of (3.1) and (3.2) (Gusev & Zhubakova 1969; Rebrov & Chekmaryov 
1970) to be correlated. Such results were not, however, derived with the intention 
of checking the above theory and thus have serious shortcomings if used for this 
purpose. The main difficulties are that Gusev & Zhubakova (1969) are only 
concerned with w = 1 and Rebrov & Chekmaryov (1970) choose only to use the 
Sutherland viscosity law. It is clearly necessary to derive numerical results 
directly applicable to the equations as described above if any significant com- 
parisons are to be made between the numerical and analytic structures of the 
solutions. A numerical procedure similar to that described by Gusev & Zhubakova 
(1969) was thus developed. 

4. Numerical method and results 
One of the main difficulties in obtaining numerical solutions to asymptotic 

theories similar to that described above is that the boundary conditions given 
for the equations are usually of an asymptotic nature. These conditions represent 
singular solutions of the differential equation and consequently are very special 
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in their behaviour. It is important, however, only to consider solutions close to 
these solutions since spurious integral curves abound in problems of this kind. 
Since the system is of third order it is not possible to do any general analysis of 
the nature of the singular points of the differential equation and it becomes 
necessary to use elaborate numerical techniques to extract the solutions of 
physical interest. To proceed with a conventional integration scheme requires 
three initial conditions, on say 8, w and dwldx, and it is the choice of these three 
parameters which are of major importance. Preliminary calculations indicated 
that if these were not chosen correctly integral curves soon reached regions of 
the function space where the solutions were unrealistic - with temperature be- 
coming negative, for example. 

To overcome these difficulties it was necessary to isolate the region of the space 
of 8, w and dwldx where realistic solutions could be found by accurately com- 
puting the asymptotic behaviour of the solutions required and using only 
values in the neighbourhood of these values to start the integration procedure. 
Early attempts to evaluate the terms of the asymptotic expansion proved in- 
adequate for this task and it was necessary to develop a technique whereby the 
evaluation of the terms of the asymptotic series could be done on the computer. 
In  this way twenty to thirty terms of the expansion could be computed without 
difficulty and only then was it possible to develop a satisfactory integration 
scheme. The method employed was to start the integration at  different points in 
the range using initial values determined from the asymptotic expansion at 
Y = 0. 

The choice of starting-point for the integration from the asymptotic values 
gives a variety of integral curves but too low an initial value gives curves which 
have negative values of temperature and are thus physically unrealistic. Such 
curves were in fact obtained by Gusev & Zhubakova (1969). For larger values of 
Y than these, the curves can be continued back to sonic conditions. This enables 
a value of a: to be assigned to them by noting the value of Y a t  which the sonic 
value of temperature and density is reached. An added check on the correctness 
of this procedure is the fact that these values are reached simultaneously to 
a high degree of accuracy. Each integration is done for a particular value of the 
downstream pressure by specifying W,. The boundary between the physically 
unrealistic curves described above and the realistic curves which can be con- 
tinued to the sonic point is thus seen to be the limiting curve for a = 0 required 
in the shock layer, since, as the unrealistic curves are approached, the value 
of a: reduces. A further check on the correctness of the integral curves may be 
made by comparing the value of a! required to give the correct scaling in the 
intermediate region with that computed from the sonic point. In practice, this 
value may be most readily computed by a scaling of the minimum temperature 
reached. This value is directly proportional to the temperature. The temperature 
variation computed by integrations of this kind is extremely close to that pre- 
dicted by the preceding analysis. Numerically, the changes in the value of the 
non-dimensional temperature are very dramatic, remaining of order one in the 
inviscid region and shock layer and becoming exceedingly small over a significant 
range in the intermediate layer as expected because of the smallness of a. The 
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FIGURE 1. Temperature variation in (a) inviscid region and (b )  intermediate layer. 

rapidity with which these changes in temperature occur as the various regions are 
approached causes considerable numerical problems, however. No attempt was 
made to use sophisticated integration schemes - a fourth-order Runge-Kutta 
scheme was used throughout - but exceedingly small integration steps were re- 
quired if the integration scheme was to proceed satisfactorily. A consequence of 
this was the extremely long runs which were required on the Newcastle University 
IBM 360167 computer. Even after satisfactory starting values had been estab- 
lished runs of 30 min were necessary. It is possible, of course, that a program could 
be developed to improve upon this. Use of the on-line facility of the computer 
allowed successive integral curves to be computed for smaller and smaller values 
of a. The smallest value of a achieved was below 5 x and this required a 
knowledge of the starting value of Y correct to 12 figures. To complete such 
runs would, however, have been prohibitive in terms of computer time. Such low 
values of a are not required to plot the solutions within the accuracy of the figures 
given below. The main results were obtained for y = i, cr = $ and w = $. No 
major differences were observed for computations at  other values of the para- 
meters and only these values are used in the results discussed below. 

The results are given in the form of a series of curves which are plotted 
with similar logarithmic scales both horizontally and vertically. These scales 
extend over many cycles so the physical magnitude of the variables is to some 
extent obscured and the large variation in numerical values, which would be 
immediately evident on a linear plot, obliterated. The advantage of using such 
a plot is, however, that any algebraic scaling of the variables simply shifts the 
curves by a constant amount vertically or horizontally. 

With this in mind, figures 1 (a )  and (b )  show the variation of temperature as 
given by equations (2.6) and (2 .7)  in the inviscid region and equation (2.13) 
in the intermediate layer, respectively. 

A typical integration in the far field is shown in figure 2; extending the integra- 
tion back to the sonic values gives a = 0.00042 with W, = 0.75. The scales of 

F L M  56 34 
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FIGURE 2. Temperature variation for W, = 0.75 and a = 0.00042. 
_ _  , intermediate-layer solution ; -. -. , inviscid solution. 

the independent variables in the three regions are plotted along the abscissae. 
It is comforting to observe that they remain of order one in their appropriate 
regions of usefulness. Within the accuracy of the display the analytic behaviour 
of temperature in the inviscid and intermediate layers is identical with the 
computed values, o d y  deviating outside the region of validity as indicated by 
the dotted curves. As noted above, the use of the logarithmic scales tends to 
obscure the extremely wide variation of the magnitude of the temperature ratio. 
It may be observed in figure 2, for example, that the temperature remains at  
less than half a per cent of its sonic value for a range of Y from 6 to 70. 

In figure 3, a comparison of two curves for fixed downstream pressure (i.e. W,) 
and varying a are shown. On the scales used it is clear that the variations in the 
intermediate layer and inviscid region are identical, only changing by the con- 
stant relative shift due to the differing values of a. 

The effect of variation of downstream pressure ( W t l )  is, as expected, to change 
the value of the temperature in the shock layer and, for fixed a, to leave unaffected 
the distribution in the intermediate and inviscid regions. 

Using the values of the temperature obtained from these integrations it is 
possible to derive the asymptotic curves required in the shock-layer region by 
extrapolation. These curves are indicated in figure 4 for different values of W,. 
A curious feature of these curves is their insensitivity to increasing W, over most 
of the range. It is also difficult to show the matching to the upstream layer since 
this occurs at  such low values of 8. 
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FIGURE 3. Temperature variation for W, = 0.75 and two values of a. 
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FIGURE 4. Variation of temperature in shock layer for varying 
ambient pressure (linear scales). 

5.  Conclusion 
The structure of the flow field for expanding spherically symmetric flow of 

a perfect gas into a near vacuum has been investigated both analytically and 
numerically. Since the shock-layer solution required integration of the complete 
equations of motion, it has been possible to verify numerically that the scaling 
suggested by the asymptotic limiting process a -+ 0 when the ambient pressure 
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is of order a2 is in fact achieved. The universality of the limiting solutions in their 
three respective regions of validity has thus been demonstrated. 

As was described in I, the corresponding results for the Boltzmann equation 
are already available for the inviscid region and the intermediate layer, although 
the matching process between these regions and the far field is more complex. 
Some effort has recently been made to compute the flow in this region, however, 
(Thomas 1972) and more detailed computations for the particular model gas 
used in this paper (i.e. using the appropriate viscosity variation with temperature 
or, in kinetic-theory terms, the appropriate variation of collision cross-section 
with temperature) might enable a similar structure to that found here to be 
verified by numerical computation. 

The original version of the computer program used in the computations for 
this paper was written by J. Mauger, whose work was supported by a research 
grant from the Science Research Council. 
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